Margin-based feature selection for hyperspectral data

نویسنده

  • Mahesh Pal
چکیده

A margin based feature selection approach is explored for hyperspectral data. This approach is based on measuring the confidence of a classifier when making predictions on a test data. Greedy feature flip and iterative search algorithms, which attempts to maximise the margin based evaluation functions, were used in the present study. Evaluation functions use linear, zero-one and sigmoid utility functions where a utility function controls the contribution of each margin term to the overall score. Results obtained by margin based feature selection technique were compared to a support vector machine based recurring feature elimination approach. Two different Hyperspectral data sets, one consisting of 65 bands (DAIS data) and other with 185 bands (AVIRIS data) were used. With DAIS data, the classification accuracy by greedy feature flip algorithm and sigmoid utility function was 93.02% using a total of 24 selected features in comparison to an accuracy of 91.76% with full set of 65 features. Results suggest a significant increase in classification accuracy with 24 selected features. The classification accuracy (93.4%) achieved by the iterative search margin based algorithm with 20 selected features using sigmoid utility function is also significantly more accurate than that achieved with 65 features. To judge the usefulness of margin based feature selection approaches, another hyperspectral data set consisting of 185 features was used. A total of 65 selected features were used to evaluate the performance of margin based feature selection approach. Results suggest a significantly improved performance by greedy feature flip based feature selection technique with this data set also. This study also suggest that margin based feature selection algorithms provide a comparable performance to support vector machine based recurring feature elimination approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Overlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery

Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...

متن کامل

Hyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations

The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...

متن کامل

کاهش ابعاد داده‌های ابرطیفی به منظور افزایش جدایی‌پذیری کلاس‌ها و حفظ ساختار داده

Hyperspectral imaging with gathering hundreds spectral bands from the surface of the Earth allows us to separate materials with similar spectrum. Hyperspectral images can be used in many applications such as land chemical and physical parameter estimation, classification, target detection, unmixing, and so on. Among these applications, classification is especially interested. A hyperspectral im...

متن کامل

Feature extraction of hyperspectral images using boundary semi-labeled samples and hybrid criterion

Feature extraction is a very important preprocessing step for classification of hyperspectral images. The linear discriminant analysis (LDA) method fails to work in small sample size situations. Moreover, LDA has poor efficiency for non-Gaussian data. LDA is optimized by a global criterion. Thus, it is not sufficiently flexible to cope with the multi-modal distributed data. We propose a new fea...

متن کامل

Semi-supervised feature learning for hyperspectral image classification

Hyperspectral image has high-dimensional Spectral–spatial features, those features with some noisy and redundant information. Since redundant features can have significant adverse effect on learning performance. So efficient and robust feature selection methods are make the best of labeled and unlabeled points to extract meaningful features and eliminate noisy ones. On the other hand, obtaining...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Applied Earth Observation and Geoinformation

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2009